Государственное санитарно-эпидемиологическое нормирование Российской Федерации Государственные санитарно-эпидемиологические правила и нормативы

2.3.3. ГИГИЕНА ПИТАНИЯ. ТАРА, ПОСУДА, УПАКОВКА, ОБОРУДОВАНИЕ И ДРУГИЕ ВИДЫ ПРОДУКЦИИ, КОНТАКТИРУЮЩИЕ С ПИЩЕВЫМИ ПРОДУКТАМИ

Предельно допустимые количества химических веществ, выделяющихся из материалов, контактирующих с пищевыми продуктами

Гигиенические нормативы ГН 2.3.3.972—00

Издание официальное

Минздрав России Москва • 2000 2.3.3. ГИГИЕНА ПИТАНИЯ. ТАРА, ПОСУДА, УПАКОВКА, ОБОРУДОВАНИЕ И ДРУГИЕ ВИДЫ ПРОДУКЦИИ, КОНТАКТИРУЮЩИЕ С ПИЩЕВЫМИ ПРОДУКТАМИ

Предельно допустимые количества химических веществ, выделяющихся из материалов, контактирующих с пищевыми продуктами

> Гигиенические нормативы ГН 2.3.3.972—00

ББК 51.23я**8** П71

П71 Предельно допустимые количества химических веществ, выделяющихся из материалов, контактирующих с пищевыми продуктами: Гигиенические нормативы.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 2000.—55 с.

- 1. Разработаны Научно-практическим центром по чрезвычайным ситуациям и гигиенической экспертизе Минздрава России (к. м. н. Заиченко А. И., к. х. н. Кочергиной Л. Л., Бекиной М. В., Егоровой А. В.) при участии ОАО "Научно-исследовательский институт пластических масс" имени Г. С. Петрова, а также к. т. н., лауреата Государственной премии Парфенова Б. Г.
- 2. Утверждены Главным государственным санитарным врачом Российской Федерации.
- 3. Введены взамен СанПиН 42—123—4240—86 "Санитарные нормы. Допустимые количества миграции (ДКМ) химических веществ, выделяющихся из полимерных и других материалов, контактирующих с пищевыми продуктами и методы их определения", утвержденных Минздравом СССР от 31.12.1986 г. № 4240.

ББК 51.23я8

ISBN 5-7508-0225-6

© Федеральный центр госсанэпиднадзора Минздрава России, 2000

Федеральный Закон "О санитарно-эпидемиологическом благополучии населения"

Государственные санитарно-эпидемиологические правила и нормативы (далее — санитарные правила) — нормативные правовые акты, устанавливающие санитарно-эпидемиологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний (статья 1).

Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц (статья 39).

За нарушение санитарного законодательства устанавливается дисциплинарная, административная и уголовная ответственность (статья 55).

Содержание

Эбщее положение	5
1. Полимерные материалы и пластические массы на их основе	8
2. Парафины и воски	19
3. Бумага, картон, пергамент, подпергамент	19
4. Стекло и изделия из стекла	25
5. Керамические изделия	27
6. Изделия из фарфора и фаянса	28
7. Стальная эмалированная посуда	29
8. Посуда с антипригарным покрытием	30
9. Лакированная консервная тара	
10. Фильтровальные неорганические материалы	
11. Металлы, сплавы	34
Приложение 1. Алфавитный перечень контролируемых химических веществ, элементов с указанием методов их определения	47
Приложение 2. Методы определения	50
Приложение 3. Рекомендации по выбору контролируемых показателей при исследовании комбинированных, композиционных материалов, а также материалов, не вошедших в настоящий перечень	54
Приложение 4. Перечень веществ, имеющих значения ДКМ,	
подлежащие уточнению	55

УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

от 29 апреля 2000 г. Дата введения: 1.08.2000

2.3.3. ГИГИЕНА ПИТАНИЯ. ТАРА, ПОСУДА, УПАКОВКА, ОБОРУДОВАНИЕ И ДРУГИЕ ВИДЫ ПРОДУКЦИИ, КОНТАКТИРУЮЩИЕ С ПИЩЕВЫМИ ПРОДУКТАМИ

Предельно допустимые количества химических веществ, выделяющихся из материалов, контактирующих с пищевыми продуктами

Гигиенические нормативы ГН 2.3.3.972—00

Общее положение

Изделия, изготовленные из полимерных и других синтетических материалов, предназначенные для контакта с пищевыми продуктами и средами, не должны отдавать в контактирующие с ними модельные растворы и воздушную среду вещества в количествах, вредных для здоровья человека, превышающих допустимые количества миграции, а также соединения, способные вызвать канцерогенный, мутагенный и другие отдаленные эффекты.

Санитарно-химические исследования изделия проводятся в установленном порядке.

Издание официальное

Настоящие гигиенические нормативы не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минздрава России.

Значения ДКМ (мг/л) — допустимых количеств миграции химических веществ являются основными критериями оценки при проведении санитарно-химических исследований продукции, предназначенной для использования в контакте с продуктами питания, влажность которых превышает 15 %. Определение уровня миграции химических веществ в этом случае проводится на модельных средах (дистиллированной воде, слабых растворах кислот и др.), имитирующих свойства предполагаемого ассортимента пищевых продуктов, при температурно-временных режимах, воспроизводящих реальные условия эксплуатации изделий.

Количественное содержание в модельных средах идентифицированных веществ не должно превышать установленные для них значения ДКМ.

Значениями Π ДК_в(мг/л) — предельно допустимых концентраций химических веществ в питьевой воде, следует руководствоваться только в том случае, когда для идентифицированного вещества значение ДКМ не установлено (отсутствует).

При проведении санитарно-химических исследований продукции, предназначенной для контакта с сухими продуктами питания, влажность которых не превышает 15 %, определение выделяемых химических веществ проводится в воздушной среде, при температурновременных режимах, отражающих реальные условия эксплуатации изделий. Найденные количества оценивают исходя из допустимых количеств данных веществ в атмосферном воздухе населенных мест.

Значения $\Pi Д K_{c.c.}$ (мг/м³) — предельно допустимых среднесуточных концентраций химических веществ в атмосферном воздухе населенных мест являются критериями, по которым следует оценивать установленный уровень миграции в воздух.

При отсутствии значения $\Pi \Delta K_{c.c.}$ для идентифицированного вещества рекомендуется руководствоваться значениями ОБУВ мг/м³ – ориентировочно безопасными уровнями воздействия загрязняющих веществ в атмосферном воздухе населенных мест.

Наряду с гигиеническими нормативами указаны классы опасности химических веществ при содержании их в воде и в воздухе. По степени воздействия на организм человека вредные вещества подразделены на четыре класса опасности: 1 класс — вещества чрезвычайно опасные, 2 класс — вещества высокоопасные, 3 класс — вещества умеренно опасные, 4 класс — вещества малоопасные, в соответствии с классификацией ГОСТ 12.1.007—76 "ССБТ. Вредные вещества. Классификация и общие требования безопасности".

При оценке материалов и изделий, предназначенных для упаковки продуктов детского питания, изготовления товаров детского ассорти-

мента, миграция химических веществ, относящихся к 1 и 2 классам опасности не допускается.

Документ содержит основные виды материалов (полимерных, синтетических, сталей, сплавов и других), предназначенных для использования в контакте с продуктами питания и основные химические вещества, присущие каждому виду материалов, которые следует контролировать при проведении типовых санитарно-химических исследований.

Жирным шрифтом выделены вещества, определением которых можно ограничиться при проведении приемосдаточных испытаний продукции отечественного производства, выпускаемой по утвержденной нормативно-технической документации.

При периодических испытаниях необходимо гигиеническую оценку осуществлять по гигиеническим показателям, указанным в гигиеническом заключении на продукцию.

В приложении 1 приведен алфавитный перечень контролируемых химических веществ, элементов с указанием методов их определения.

В приложении 2 – методы определения (перечень).

В приложении 3 – рекомендации по выбору контролируемых показателей при исследовании комбинированных, композиционных материалов, а также материалов, не вошедших в настоящий перечень.

В приложении 4 – перечень веществ, имеющих значения ДКМ, подлежащие уточнению.

Перечень контролируемых показателей составлен на основании результатов исследовательских работ, выполненных Научно-практическим центром по чрезвычайным ситуациям и гигиенической экспертизе Минздрава России и других учреждений госсанэпидслужбы, анализа литературных данных по российским и зарубежным источникам, а также данных, представленных изготовителями продукции по условиям синтеза, производства и рецептурным составам материалов.

Этот перечень, не может являться окончательным. В связи с этим информацию о результатах исследований в области гигиенической оценки материалов, изделий, контактирующих с продуктами питания, содержащую дополнительные данные, просим направлять в адрес Департамента госсанэпиднадзора Минздрава России.

Замечания, пожелания, рекомендации по совершенствованию перечня просьба направлять в Комиссию по государственному санитарноэпидемиологическому нормированию Минздрава России.

Гигиенические показатели и нормативы веществ, выделяющихся из материалов, изделий, контактирующих с продуктами питания

Наименование материала, изделия	Контролируемые показатели	ДКМ, мг/л	ПДК _в хим. в-в в питьевой воде, мг/л	Класс опас- ности	ПДК _{с.с.} мг/м ³	ОБУВ а.в., мг/м ³	Класс опас- ности
1	2	3	4	5	6	7	8

1. Полимерные материалы и пластические массы на их основе

1.1.Полиэтилен (ПЭВД,	формальдегид	0,100		2	0,003		2
ПЭНД), полипропилен,	ацетальдегид		0,200	4	0,010	-	3
сополимеры пропилена с	этилацетат	0,100		2	0,100	_	4
этиленом, полибутилен,	гексан	0,100		4	_		_
полиизобутилен,	гептан	0,100	_	4			
комбинированные	гексен		_		0,085	-	3
материалы на основе	гептен	- 1	_	_	0,065		3
полиолефинов	ацетон	0,100	-	3	0,350		4
1	спирты:						
	метиловый	0,200	-	2	0,500	_	3
	пропиловый	0,100	-	4	0,300	_	3
	изопропиловый	0,100	_	4	0,600		3
	бутиловый	0,500	_	2	0,100	_	3
	изобутиловый	0,500		2	0,100	_	4

1	2	3	4	5	6	7	8
1.2. Полистирольные плас	тики						
полистирол (блочный,	стирол	0,010	_	2	0,002	_	2
суспензионный,	спирты:						
ударопрочный)	метиловый	0,200	-	2	0,500		3
	бутиловый	0,500	_	2	0,100		3
	формальдегид	0,100	=	2	0,003	-	2
	бензол		0,010	2	0,100		2
	толуол	-	0,500	4	0,600	_	3
	этилбензол	-	0,010	4	0,020	_	3
сополимер стирола с	стирол	0,010		2	0,002		2
акрилонитрилом	акрилонитрил	0,020	_	2	0,030	_	2
	формальдегид	0,100	-	2	0,003		2
	бензальдегид	-	0,003	4	0,040		3
АБС-пластики	стирол	0,010	_	2	0,002	_	2
	акрилонитрил	0,020		2	0,030	_	2
	α-метилстирол	- [0,100	3	0,040		3
	бензол	T - T	0,010	2	0,100	-	2
	толуол	T - T	0,500	4	0,600	_	3
	этилбензол		0,010	4	0,020	_	3
	бензальдегид	_	0,003	4	0,040	_	3
	ксилолы (смесь изомеров)	-	0,050	3	0,200	_	3

					Продо	эмение	таблицы
1	2	3	4	5	6	7	8
сополимер стирола с	стирол	0,010	_	2	0,002	_	2
метилметакрилатом	метилметакрилат	0,250	_	2	0,010	-	3
	метиловый спирт	0,200	_	2	0,500	_	3
	формальдегид	0,100	_	2	0,003	_	2
сополимер стирола с	стирол	0,010	_	2	0,002		2
метилметакрилатом и акрилонитрилом	метилметакрилат	0,250	_	2	0,010	_	3
	акрилонитрил	0,020	_	2	0,030		2
	метиловый спирт	0,200	<u>-</u>	2	0,500	-	3
	формальдегид	0,100	_	2	0,003	_	2
сополимер стирола с	стирол	0,010		2	0,002	-	2
α-метилстиролом	α-метилстирол		0,100	3	0,040	_	3
	бензальдегид	-	0,003	4	0,040	_	3
	ацетофенон	-	0,100	3	0,003		3
сополимеры стирола с	стирол	0,010	_	2	0,002	_	2
бутадиеном	бутадиен	_	0,050	4	1,000	_	4
	ацетальдегид	_	0,200	4	0,010	-	3
	ацетон	0,100	_	3	0,350	_	4
	спирты:		·				
	метиловый	0,200	_	2	0,500	_	3
	бутиловый	0,500	<u>.</u>	2	0,100	_	3
	ксилолы (смесь изомеров)	_	0,050	3	0,200	_	3

1	2	3	4	5	6	7	8
вспененные полистиролы	стирол	0,010	_	2	0,002	-	2
_	бензол	_	0,010	2	0,100	_	2
	толуол	_	0,500	4	0,600		3
	этилбензол	_	0,010	4	0,020		3
	кумол (изопропил- бензол)	_	0,100	3	0,014	_	4
	метиловый спирт	0,200	_	2	0,500	_	3
	формальдегид	0,100		2	0,003	_	2
1.3. Поливинилхлоридные г	іластики						
жесткий ПВХ	винил хлористый	0,010 1,0 мг/кг (1 ppm) готового изделия	_	2	0,010	_	1
	ацетальдегид	-	0,200	4	0,010	_	3
	ацетон	0,100		3	0,350	_	4
	спирты:						
	метиловый	0,200		2	0,500	- "	3
II.	пропиловый	0,100	_	4	0,300	_	3
	изопропиловый	0,100		4	0,600	_	3
	бутиловый	0,500		2	0,100	_	3
	изобутиловый	0,500		2	0,100	_	4
	бензол		0,010	2	0,100	_	2
	толуол	_	0,500	4	0,600		3
	цинк (Zn)	1,000		3	_		_
	олово (Sn)		2,000	3	_		_

					Продс	элжение	габлицы
1	2	3	4	5	6	7	8
пластифицированный ПВХ, дополнительно к показателям, указанным для жесткого ПВХ следует определять							
	диоктилфталат	2,000	-	3	_	0,020	
	дидодецилфталат	2,000	-	3	-	0,100	
	диизододецилфталат	2,000	_	3	-	0,030	_
	дибутилфталат *)		не	допуска	ется		
1.4. Полимеры на основе	винилацетат	_	0,200	2	0,150	-	3
винилацетата и его	формальдегид	0,100	_	2	0,003		2
производных:	ацетальдегид	_	0,200	4	0,010	_	3
поливинилацетат	гексан	0,100		4	_	_	
поливиниловый спирт	гептан	0,100	_	4	[<u>-</u>		
сополимерная дисперсия							
винилацетата с							
дибутилмалеинатом							
*) Пластификатор дибутилфтала	т не разрешен для полиме	рных матери	алов, предназначен	ных для к	онтакта с про	дуктами пи	гания
1.5. Полиакрилаты	гексан	0,100	_	4	_	- :	-
	гептан	0,100	-	4		- 1	
	акрилонитрил	0,020	_	2	0,030		2
	метилакрилат	_	0,020	4	0,010	_	4
	метилметакрилат	0,250	_	2	0,010	-	3
	бутилакрилат	_	0,010	4	0,0075	T -	2

					продс	NIWCUNG	паслищь
1	2	3	4	5	6	7	8
1.6. Полиорганосилакса-	формальдегид	0,100	_	2	0,003	_	2
ны (силиконы)	ацетальдегид	_	0,200	4	0,010	-	3
	фенол	0,050		4	0,003	-	2
	спирты:						
	метиловый	0,200	_	2	0,500		3
	бутиловый	0,500	_	2	0,100	-	3
	бензол	-	0,010	2	0,100	_	2
1.7. Полиамиды:							
полиамид 6 (поликапроамид,	Е-капролактам	0,500	_	4	0,060	_	3
капрон)	бензол		0,010	2	0,100	_	2
	фенол	0,050	-	4	0,003	-	2
полиамид 66,	гексаметилендиамин	0,010	-	2	0,001	_	2
(полигексаметиленадип-	метиловый спирт	0,200	_	2	0,500	-	3
амид, найлон)	бензол	-	0,010	2	0,100	_	2
полиамид 610	гексаметилендиамин	0,010	_	2	0,001	-	2
(полигексаметиленсеба-	метиловый спирт	0,200	_	2	0,500	_	3
цинамид)	бензол	_	0,010	2	0,100	_	2

					Проде	олжение 1	габлицы
1	2	3	4	5	6	7	8
1.8. Полиуретаны	этиленгликоль	_	1,000	3	-	1,000	-
	ацетальдегид	-	0,200	4	0,010	-	3
	формальдегид	0,100	-	2	0,003	-	2
	этилацетат	0,100	_	2	0,100	-	4
	бутилацетат	_	0,100	4	0,100	_	4
	ацетон	0,100	_	3	0,350	-	4
	спирты:						
	метиловый	0,200	_	2	0,500	_	3
	пропиловый	0,100	_	4	0,300	_	3
	изопропиловый	0,100	_	4	0,600	-	3
	бензол	-	0,010	2	0,100	-	2
	толуол	-	0,500	4	0,600	- 1	3
1.9. Полиэфиры:						Ĭ	
полиэтиленоксид	формальдегид	0,100	_	2	0,003	-	2
	ацетальдегид	_	0,200	4	0,010	_	3
полипропиленоксид	метилацетат	_	0,100	3	0,070	- 1	4
	ацетон	0,100	_	3	0,350	- 1	4
	формальдегид	0,100	_	2	0,003	_ 1	2
	ацетальдегид	-	0,200	4	0,010		3

1	2	3	4	5	6	7	8
политетраметиленоксид	пропиловый спирт	0,100	_	4	0,300	_	3
	ацетальдегид	_	0,200	4	0,010		3
	формальдегид	0,100	_	2	0,003	-	2
полифениленоксид	фенол	0,050	_	4	0,003		2
	формальдегид	0,100	_	2	0,003	-	2
	метиловый спирт	0,200	_	2	0,500	-	3
полиэтилентерефталат и сополимеры на основе терефталевой кислоты	ацетальдегид	_	0,200	4	0,010	-	3
	этиленгликоль	_	1,000	3	-	1,000	
	диметилтерефталат	_	1,500	4	_		1
	формальдегид	0,100		2	0,003		2
	спирты:						
	метиловый	0,200	_	2	0,500	-	3
	бутиловый	0,500		2	0,100	-	3
	изобутиловый	0,500	-	2	0,100	-	4
	ацетон	0,100		3	0,350	-	4
поликарбонат	фенол	0,050	-	4	0,003	_	2
	дифенилолпропан	0,010	-	4	_	0,040	_
	метиленхлорид (дихлорметан)	_	7,500	3	_	_	_
	хлорбензол	_	0,020	3	0,100	-	3

					Прод	олжение	габлицы
1	2	3	4	5	6	7	8
полисульфон	дифенилолпропан	0,010	_	4		0,040	_
• •	бензол		0,010	2	0,100	- 1	2
	фенол	0,050	_	4	0,003	t - 1	2
полифениленсульфид	фенол	0,050	_	4	0,003	-	2
	ацетальдегид	_	0,200	4	0,010	1 - 1	3
	метиловый спирт	0,200	_	2	0,500	- 1	3
	дихлорбензол	_	0,002	3		0,030	
	бор (В)	0,500	_	2		- 1	-
при использовании							
в качестве связующего:							
фенолоформаль-	фенол	0,050	_	4	0,003		2
дегидных смол	формальдегид	0,100	_	2	0,003		2
кремнийорганических	формальдегид	0,100	_	2	0,003	-	2
смол	ацетальдегид		0,200	4	0,010	- 1	3
	фенол	0,050		4	0,003	T - T	2
	спирты:						
	метиловый	0,200		2	0,500	- 1	3
	бутиловый	0,500		2	0,100	T - T	3
	бензол	_	0,010	2	0,100	Γ Τ	2
эпоксидных смол	элихлоргидрин	0,100		2	0,200	<u> </u>	2
	фенол	0,050		4	0,003		2
	дифенилолпропан	0,010	-	4	-	0,040	_
	формальдегид	0,100		2	0,003	- 1	2

			,			Jankoniic	
11	2	3	4	5	6	7	8
 1.11. Фторопласты: 							
фторопласт-3,	фтор-ион (суммарно)	0,500	_	2			-
фторопласт-4,	формальдегид	0,100	-	2	0,003		2
тефлон	гексан	0,100	-	4	-	_	-
	гептан	0,100	_	4	-	-	-
1.12. Пластмассы на основе фенолоальдегидных	формальдегид	0,100	-	2	0,003	-	2
смол (фенопласты)	ацетальдегид	_	0,200	4	0,010	-	3
	фенол	0,050	_	4	0,003	-	2
1.13. Полиформальдегид	формальдегид	0,100	-	2	0,003	-	2
	ацетальдегид		0,200	4	0,010	-	3
1.14. Аминопласты (массы прессованные карбамидо- и	формальдегид	0,100	-	2	0,003	-	2
меламиноформальдегидные)							
1.15. Полимерные	эпихлоргидрин	0,100	_	2	0,200	-	2
материалы на основе	фенол	0,050	_	4	0,003	-	2
эпоксидных смол	дифенилолпропан	0,010		4		0,040	
	формальдегид	0,100	_	2	0,003	-	2
1.16. Иономерные	формальдегид	0,100	-	2	0,003	-	2
смолы, в т. ч. серлин	ацетальдегид	_	0,200	4	0,010		3
	ацетон	0,100	_	3	0,350	_	4
	метиловый спирт	0,200	_	2	0,500		3
	цинк (Zn)	1,000		3			

					Продо	лжение	таблицы
1	2	3	4	5	6	7	8
1.17. Целлюлоза	этилацетат	0,100	_	2	0,100	-	4
	формальдегид	0,100	_	2	0,003	-	2
	бензол	-	0,010	2	0,100	_	2
	ацетон	0,100		3	0,350		4
1.18. Эфирцеллюлозные	этилацетат	0,100	_	2	0,100	_	4
пластмассы (этролы)	ацетальдегид	-	0,200	4	0,010	_	3
	формальдегид	0,100	_	2	0,003	_	2
	спирты:						
	метиловый	0,200	_	2	0,500	_	3
	изобутиловый	0,500	-	2	0,100	_	4
	ацетон	0,100	-	3	0,350	-	4
1.19. Коллаген	формальдегид	0,100	-	2	0,003	-	2
(биополимер)	ацетальдегид	- 1	0,200	4	0,010	_	3
	этилацетат	0,100	_	2	0,100	_	4
	бутилацетат	_	0,100	4	0,100	_	4
	ацетон	0,100	_	3	0,350	-	4
	спирты:						
	метиловый	0,200	_	2	0,500	_	3
	пропиловый	0,100	_	4	0,300	_	3
	изопропиловый	0,100	_	4	0,600	_	3
	бутиловый	0,500	-	2	0,100	_	3
	изобутиловый	0,500	-	2	0,100	-	4

2. Парафины и воски

1	2	3	4	5	6	7	8
2.1. Парафины и воски	гексан	0,100	_	4	_	-	-
	гептан	0,100	_	4	_		
	бенз(я)пирен	не дог	тускается	1	не д	опускает	СЯ
	ацетальдегид		0,200	4	0,010	-	3
	формальдегид	0,100	_	2	0,003	-	2
	ацетон	0,100	_	3	0,350		4
	спирты:						
	метиловый	0,200	_	2	0,500	-	3
	бутиловый	0,500	_	2	0,100	-	3
	толуол	-	0,500	4	0,600		3

3. Бумага, картон, пергамент, подпергамент

1	2	3	4	5	6	7	8
3.1. Бумага	этилацетат	0,100	-	2	0,100	_	4
	формальдегид	0,100	_	2	0,003	-	2
	ацетальдегид		0,200	4	0,010	_	3
	ацетон	0,100		3	0,350	_	4
	спирты:						
	метиловый	0,200	_	2	0,500		3_
	бутиловый	0,500	_	2	0,100	_	3
	толуол	T T	0,500	4	0,600	_	3

Продолжение таблицы 4 5 6 2 3 бензол 0,010 2 0,100 2 2 свинец (Pb) 0,030 3 цинк (Zn) 1,000 2 мышьяк (As) 0,050 хром (Cr³⁺) 3 суммарно хром (Cr⁶⁺) 3 0,10 3.2. Бумага парафинирован-0,100 4 ная дополнительно к показагексан 0,100 телям, указанным для бумаги, гептан бенз(а)пирен следует определять не допускается 3.3. Картон 0,100 0,100 4 этилацетат 0,100 4 0.100 4 бутилацетат _ _ 0,010 3 ацетальдегид 0,200 4 0,100 2 0.003 2 формальдегид 0,100 3 0,350 4 ацетон спирты: 0,200 2 0,500 метиловый 3 3 0,100 изопропиловый 4 0,600 3 0,500 2 0,100 бутиловый 2 изобутиловый 0,500 0,100 4 0,010 2 0,100 бензол 2 0,500 3 4 0,600 толуол

1	2	3	4	5	6	7	8
	ксилолы (смесь изомеров)	_	0,050	3	0,200	_	3
	свинец (Рь)	0,030		2	_		_
	цинк (Zn)	1,000		3			
	мышьяк (As)	0,050		2			_
	хром (Cr ³⁺)	суммарно		3			<u> </u>
	хром (Cr ⁶⁺)	0,100		3	_	_	
картон мелованный	титан (Ті)	0,100		3			
дополнительно	алюминий (Al)	0,500		2	I – –		
следует определять	барий (Ва)	0,100		2	<u> </u>		
3.4. Картон	бутилацетат	- 1	0,100	4	0,100	-	4
макулатурный**)	этилацетат	0,100		2	0,100		4
	ацетальдегид	1 - 1	0,200	4	0,010		3
	спирты:						
	метиловый	0,200		2	0,500		3
	бутиловый	0,500		2	0,100		3
	ацетон	0,100		3	0,350		4
	формальдегид	0,100	_	2	0,003	_	2
	бензол		0,010	2	0,100	_	2
	толуол		0,500	4	0,600	_	3
	ксилолы (смесь изомеров)	-	0,050	3	0,200	_	3

·					Продс	элжение	таблицы
1	2	3	4	5	6	7	8
	свинец (Pb)	0,030	_	2	_	_	_
	цинк (Zn)	1,000	-	3	_	_	
	мышьяк (Аѕ)	0,050	_	2	_	_	-
	хром (Cr ³⁺)	суммарно	_	3		_	
	хром (Cr ⁶⁺)	0,100		3	_	_	_
	кадмий (Cd)	0,001	_	2	_	_	-
	барий (Ва)	0,100	_	2			_
3.5. Картон	этилацетат	0,100		2	0,100	_	4
фильтровальный	ацетальдегид	_	0,200	4	0,010	_	3
	метиловый спирт	0,200	-	2	0,500	_	3
	ацетон	0,100	_	3	0,350	_	4
	формальдегид	0,100	_	2	0,003	_	2
	свинец (Рь)	0,030	0,030	2	_	_	- 1
	цинк (Zn)	1,000	_	3	_	_	
	мышьяк (As)	0,050	_	2	-	_	_
	хром (Cr ³⁺)	суммарно		3	-	-	
	хром (Cr ⁶⁺)	0,100	_	3		_	
с добавлением полиамид-	Е-капролактам	0,500		4	0,060	-	3
эпихлоргидриновых	фенол	0,050	-	4	0,003	-	2
смол	эпихлоргидрин	0,100		2	0,200	_	2
с добавлением алюминия мелкодисперсного	алюминий (Al)	0,500	_	2	-	_	

					- H - H		Таслиць
1	2	3	4	5	6	7	8
с добавлением	алюминий (Al)	0,500	-	2	_	_	-
диатомита	кремний (Si)		10,000	2	_	_	_
	железо (Fe)	0,300		-	_		<u> </u>
	свинец (Рв)	0,030		2		_	_
	марганец (Мп)	0,100	_	3	_	_	<u> </u>
	бериллий (Ве)	0,0002		1	_		<u> </u>
	титан (Ті)	0,100	_	3		_	
3.6. Пергамент	этилацетат	0,100	_	2	0,100	_	4
растительный	формальдегид	0,100		2	0,003	_	2
	спирты:						
	метиловый	0,200		2	0,500	_	3
	пропиловый	0,100	_	4	0,300	_	3
	изопропиловый	0,100	_	4	0,600	_	3
	бутиловый	0,500	_	2	0,100	_	3
	изобутиловый	0,500		2	0,100	_	4
	ацетон	0,100	_	3	0,350	_	4
	свинец (Pb)	0,030	_	2	-	_	-
	цинк (Zn)	1,000	_	3	_	_	[
	мышьяк (As)	0,050		2			_
	медь (Cu)	1,000	_	3	_	_	-
	железо (Fe)	0,300	_		-	_	
	хром (Cr ³⁺)	суммарно	_	3	_		
	хром (Cr ⁶⁺)	0,100		3	_	_	

								H
					Продо	лжение	таблицы	$\frac{2.3}{}$
1	2	3	4	5	6	7	8	3.972
3.7. Подпергамент (бумага	этилацетат	0,100	_	2	0,100	-	4	72-
с добавками, имитирующи-	формальдегид	0,100	-	2	0,003	-	2	8
ми свойства пергамента	ацетальдегид	_	0,200	4	0,010	_	3	9
растительного)	фенол	0,050	_	4	0,003	-	2	
	эпихлоргидрин	0,100	-	2	0,200	_	2	l
	Е-капролактам	0,500	_	4	0,060	_	3	
	спирты:							
	метиловый	0,200	_	2	0,500	_	3	
	пропиловый	0,100	_	4	0,300	_	3	İ
	изопропиловый	0,100	_	4	0,600	_	3	
	бутиловый	0,500	-	2	0,100	-	3	
	изобутиловый	0,500	-	2	0,100	_	4	
	ацетон	0,100	-	3	0,350	_	4	İ
	бензол	_	0,010	2	0,100	_	2	İ
	толуол		0,500	4	0,600	_	3	
	ксилолы (смесь изомеров)	_	0,050	3	0,200	_	3	
	цинк (Zn)	1,000	-	3	_	-	-	
	свинец (Pb)	0,030	_	2	_		-	ĺ
	хром (Cr ³⁺)	суммарно	_	3	_	-	-	
	хром (Cr ⁶⁺)	0,100	_	3		-		
	мышьяк (As)	0,050	_	2	_	-	_	
	титан (Ті)	0,100	_	3	_	-		
	кадмий (Cd)	0,001	_	2		_	_]	

4. Стекло и изделия из стекла

1	2	3	4	5	6	7	8
4.1. Тара стеклянная для пи	щевых продуктов						
стекла бесцветные и	бор (В)	0,500		2	_	-	-
полубелые	алюминий (Al)	0,500	-	2	_	I -	
	мышьяк (As)	0,050	_	2	_		_
стекла зеленые	алюминий (Al)	0,500	_	2	_	_	_
	хром (Cr ³⁺)	суммарно	_	3	_	_	
	хром (Cr ⁶⁺)	0,100	_	3	_	_	_
	медь (Cu)	1,000	_	3	_	<u> </u>	_
	бор (В)	0,500		2		_	_
стекла коричневые	алюминий (Al)	0,500		2	_	T	_
	марганец (Мп)	0,100		3	_	_	
	бор (В)	0,500	_	2	_	-	_
стекла хрустальные	свинец (Pb)	0,030		2	_	_	_
	алюминий (Al)	0,500	_	2			_
	бор (В)	0,500	_	2	_	_	
	кадмий (Cd)	0,001	_	2	_		_
дополнительно при оценке							
бариевого хрусталя	барий (Ва)	0,100	_	2	_	_	
дополнительно при окраши							
голубой цвет	хром (Cr ³⁺)	суммарно	_	3	_	-	
	хром (Cr ⁶⁺)	0,100	_	3			
	медь (Cu)	1,000	_	3	_	_	_

					Проде	олжение	таблиць	
1	2	3	4	5	6	7	8	3.972
синий цвет	кобальт (Со)	0,100	_	2	_	<u> </u>	<u> </u>	12
красный цвет	медь (Cu)	1,000		3	-	-	-]
	марганец (Mn)	0,100	_	3	_	_	-]~
желтый цвет	хром (Cr ³⁺)	суммарно	_	3	_	_]
	хром (Cr ⁶⁺)	0,100	_	3	_	-	_]
	кадмий (Cd)	0,001	<u> </u>	2	-			
	барий (Ва)	0,100	_	2	_	_	_]
4.2. Изделия из стекла с д	екоративным покрытие	M						1
титаном, нитридом	титан (Ті)	0,100	_	3	_	-	_]
титана, диоксидом	алюминий (Al)	0,500	_	2	_	-	-]
титана	бор (В)	0,500	_	2	_			
цирконием, нитридом								
циркония, диоксидом	бор (В)	0,500	_	2	_		_]
циркония	алюминий (Al)	0,500	_	2	_	I -	_]
хромом	хром (Cr ³⁺)	суммарно	-	3	_	_	_	
	хром (Cr ⁶⁺)	0,100	_	3	-	_	_	
	кремний (Si)	_	10,000	2	_	_	-	
	алюминий (Al)	0,500	-	2	_	_	_	
	бор (В)	0,500	_	2	-	_	_	1

5. Керамические изделия

1	2	3	4	5	6	7	8
5.1. Керамические	бор (В)	0,500	_	2	_] -	_
изделия	цинк (Zn)	1,000		3		_	
	титан (Ті)	0,100		3	-	_	_
	алюминий (Al)	0,500	_	2			_
	кадмий (Cd)	0,001		2		_	_
	барий (Ва)	0,100		2			_
при использовании							
свинцовых глазурей ***)	свинец (Pb)	0,030	_	2	_	_	
при использовании селено-							
кадмиевых глазурей	кадмий (Cd)	0,001		2			_
при использовании	барий (Ва)	0,100	-	2			_
баритовых глазурей							
***) В России используется тол	ько бессвинцовая, фри	ттованная глазу	рь				
при использовании красителей, обеспечивающих	марганец (Мп)	0,100	_	3	_	_	-
розово-коричневые оттенки и черный цвет							
при использовании зеле-	медь (Си)	1,000		3	-	-	_
ных и черных красителей	хром (Cr ³⁺)	суммарно		3	_		_
	хром (Cr ⁶⁺)	0,100	_	3	_	<u> </u>	_

					Прод	олжение	таблицы
1	2	3	4	5	6	7	8
при использовании синих красителей	кобальт (Со)	0,100		2	-	-	_
при использовании	кадмий (Cd)	0,001	_	2	-	_	_
желтых красителей	хром (Cr ³⁺)	суммарно	_	3		_	
	хром (Cr ⁶⁺)	0,100	_	3	_	_	_

6. Изделия из фарфора и фаянса

6.1. Изделия из фарфора					-		
и фаянса с подглазурной	свинец (Pb)	0,030	_	2	-	-	_
росписью	кадмий (Cd)	0,001	-	2	-	_	_
при добавлении в фарфоровую массу окиси кобальта дополнительно следует определять:	кобальт (Со)	0,100	-	2	-	-	_
при использовании	алюминий (Al)	0,500	_	2	_		_
бессвинцовых	бор (В)	0,500	_	2	_	_	-
глазурей	цинк (Zn)	1,000	_	3	_	_	-
	литий (Li)	_	0,030	2	-	-	_
при использовании	алюминий (Al)	0,500	_	2	-	-	-
баритовых глазурей	барий (Ва)	0,100		2	-	-	_
	бор (В)	0,500	-	2	-	-	_

1	2	3	4	5	6	7	8
при использовании окрашен	ных глазурей:						
розовые	марганец (Mn)	0,100	-	3	-	_	_
голубые	кобальт (Со)	0,100	_	2	_	- "	-
	медь (Си)	1,000	_	3	_	-	_
желтые	хром (Cr ³⁺)	суммарно	_	3	_	_	-
	хром (Cr ⁶⁺)	0,100	_	3	_	-	_
	кадмий (Cd)	0,001	_	2	_	_	_
6.2. Изделия из фарфора и фаянса с надглазурной росписью	дополнительно контролируемые показатели определяются составом красок						

7. Стальная эмалированная посуда

7.1. Стальная эмалирован-	алюминий (Al)	0,500	_	2	_	_	_
ная посуда, полученная	бор (В)	0,500	-	2	_	-	-
при использовании сили- катных эмалей (фриттов)	железо (Fe)	0,300	_		_	-	-
катных эмален (фриттов)	кобальт (Со)	0,100	_	2	-	_	_
	никель (Ni)	0,100	_	3	_	_	_
	хром (Cr ³⁺)	суммарно	_	3	-	-	-
	хром (Cr ⁶⁺)	0,100	_	3	_	_	-
	марганец (Мп)	0,100	_	3	_	_	_

1	2	3	4	5	6	7	8
7.2. Стальная эмалирован-	алюминий (Al)	0,500		2		-	-
ная посуда, полученная при использовании титановых эмалей	бор (В)	0,500	_	2	-	- 1	
	железо (Fe)	0,300	-			-	-
	кобальт (Со)	0,100		2	_	_	-
	никель (Ni)	0,100	_	3	_	_	-
	свинец (Рb)	0,030		2		_	_
	мышьяк (As)	0,050		2			_
	цинк (Zn)	1,000		3	_	-	_
	титан (Ті)	0,100		3	-		

8. Посуда с антипригарным покрытием

8.1. Посуда с антипригар-	фтор-ион (суммарно)	0,500	-	2	_	_	
ным покрытием на основе фторопласта	ацетальдегид		0,200	4	0,010		3
	спирты:						
1	метиловый	0,200	-	2	0,500	_	3
	пропиловый	0,100	_	4	0,300		3
}	изопропиловый	0,100	_	4	0,600	_	3
]	бутиловый	0,500		2	0,100	-	3
]	изобутиловый	0,500		2	0,100	_	4
	ксилолы (смесь изомеров)	-	0,050	3	0,200	_	3

1	2	3	4	5	6	7	8
антипригарное покрытие:							
серого цвета	титан (Ті)	0,100	_	3		_	_
синего цвета	кобальт (Со)	0,100	_	2	_	_	-
коричневого цвета	железо (Fe)	0,300	_		-	-	_
зеленого цвета	хром (Cr ³⁺)	суммарно	_	3	-	-	-
	хром (Cr ⁶⁺)	0,100	_	3	-	-	-
розового цвета	марганец (Мп)	0,100	-	3	-	_	-
при нанесении покрытия	железо (Fe)	0,300	-	-	_	-	_
на углеродистую и низко-	марганец (Мп)	0,100	_	3	_	-	-
легированные стали							
при нанесении покрытия на	алюминий (Al)	0,500	_	2	-		-
алюминий и алюминиевые сплавы	медь (Си)	1,000		3	-	-	_

9. Лакированная консервная тара

9.1. Тара лакированная	эпихлоргидрин	0,100	-	2	0,200		2
эпоксифенольными	формальдегид	0,100	-	2	0,003	_	2
лаками	фенол	0,050	_	4	0,003	_	2
	дифенилолпропан	0,010		4	_	0,040	_
1	цинк (Zn)	1,000	_	3	_		_
	свинец (Pb)	0,030	-	2	_	-	_
	ксилолы (смесь изомеров)	_	0,050	3	0,200	-	3

					Продо	олжение	габлицы
1	2	3	4	5	6	7	8
	спирты:						
	метиловый	0,200	_	2	0,500		3
	пропиловый	0,100		4	0,300	-	3
	бутиловый	0,500		2	0,100		3
	изобутиловый	0,500		2	0,100]	4
	ацетон	0,100		3	0,350		4
	этилбензол		0,010	4	0,020	_	3
9.2. Тара лакированная	формальдегид	0,100	-	2	0,003		2
фенольно-масляными	фенол	0,050	-	4	0,003	_	2
лаками	свинец (Pb)	0,030	~	2		_	-]
9.3. Тара покрытая белко-	эпихлоргидрин	0,100	_	2	0,200	_	2
во-устойчивыми	формальдегид	0,100	-	2	0,003	-	2
эмалями, содержащими	дифенилолпропан	0,010	_	4		0,040	
цинковую пасту	цинк (Zn)	1,000		3	-	_	
	свинец (Pb)	0,030	_	2	_		
9.4. Тара с винил-органсо-	формальдегид	0,100	-	2	0,003	_	2
ловым покрытием	ацетальдегид	~	0,200	4	0,010		3
	фенол	0,050		4	0,003		2
	ацетон	0,100	4	3	0,350	-	4
	винилацетат		0,200	2	0,150	-	3
	винил хлористый	0,010		2	0,010	- 1	1

					1 11		
1	2	3	4	5	6	7	8
	спирты:						
	метиловый	0,200		2	0,500	_	3
	изопропиловый	0,100		4	0,600		3
	бутиловый	0,500		2	0,100	_	3
	изобутиловый	0,500		2	0,100	_	4
	ксилолы (смесь изомеров)		0,050	3	0,200	_	3
	свинец (Pb)	0,030	_	2	-	_	_
Дополнительно следует опр	еделять						
при пигментировании лака алюминиевой пудрой	алюминий (Al)	0,500	_	2	_	_	-
при изготовлении тары из алюминия, алюминиевых сплавов	алюминий (Al)	0,500	_	2	_	_	-

10. Фильтровальные неорганические материалы

10.1. Кизельгуры	Кремний (Si)		10,000	2	_	_	
	алюминий (Al)	0,500	_	2		T -	_
	железо (Fe)	0,300				T -	
	титан (Ti)	0,100		3	-	-	_
10.2. Перлиты	Кремний (Si)	- 1	10,000	2	-	_	
	алюминий (Al)	0,500	_	2	-	-	-
	железо (Fe)	0,300			-	- -	_

_		лжен	_		 •
	 ~		 *~~	~	

							
1	2	3	4	5	6	7	8
	свинец (Рь)	0,030	-	2	-		
	хром (Cr ³⁺)	суммарно	-	3	_	-	_
	хром (Cr ⁶⁺)	0,100	-	3		-	-
	мышьяк (As)	0,050	-	2	_		
	кадмий (Cd)	0,001	-	2		-	
\$	марганец (Mn)	0,100	-	3	_	1	-
	титан (Ті)	0,100	-	3	_	_	_

11. Металлы, сплавы

11.1. Чугун	железо (Fe)	0,300	-			-	
	хром (Cr ³⁺)	суммарно		3	-	_	_
	хром (Cr ⁶⁺)	0,100	_	3	-		~
	никель (Ni)	0,100		3	~-	-	~
	медь (Cu)	1,000		3			
11.2. Сталь углеродистая	железо (Fe)	0,300	-				
(ΓOCT 380) ****)	марганец (Мп)	0,100		3	-	_	
****) Здесь и далее приводято ственную, так и на импортнук		ную продукцию	(нормируемые по	оказатели р	аспространя	ются как н	а отече-
	хром (Cr ³⁺)	суммарно	-	3	-	_	-
	хром (Cr ⁶⁺)	0,100		3	-	_	-
	никель (Ni)	0,100		3	-	-	-
	мель (Си)	1,000		3	-		

1	2	3	4	5	6	7	8
11.3. Стали	железо (Fe)	0,300	-	_	_	_	_
низколегированные	марганец (Мп)	0,100	-	3	_	_	_
(FOCT 5058)	хром (Cr ³⁺)	суммарно	-	3	_		-
	хром (Cr ⁶⁺)	0,100	_	3	_	-	_
	никель (Ni)	0,100		3			-
	медь (Си)	1,000	-	3	_	_	_
11.4. Сталь углеродистая	железо (Fe)	0,300	_	_	_	-	-
качественная	марганец (Мп)	0,100	_	3	_	_	_
(ΓΟCT 1050, 1435)	хром (Cr ³⁺)	суммарно	_	3	_	_	_
	хром (Cr ⁶⁺)	0,100		3	_	-	-
11.5. Сталь хромистая	железо (Fe)	0,300	_	_	_	_	_
(ГОСТ 4543)	марганец (Mn)	0,100	_	3	_	-	_
	хром (Cr ³⁺)	суммарно	_	3	_	_	_
	хром (Cr ⁶⁺)	0,100	_	3	_		_
11.6. Сталь хромокремнистая	железо (Fe)	0,300	_	_	_	-	_
(ГОСТ 4543)	марганец (Мп)	0,100	_	3	-	_	_
	хром (Cr ³⁺)	суммарно	_	3	_	_	_
	хром (Cr ⁶⁺)	0,100	_	3	_		
	кремний (Si)	_	10,000	2	_		_

					Продо	олжение	таблиці
1	2	3	4	5	6	7	8
11.7. Сталь хромованадиевая	железо (Fe)	0,300				-	
(ΓOCT 4543)	марганец (Мп)	0,100	-	3			_
	хром (Cr ³⁺)	суммарно	= = =	3			
	хром (Cr ⁶⁺)	0,100	-	3]	I
	ванадий (V)	0,100	-	3	-		
11.8. Сталь хромоникелевая	железо (Fe)	0,300	-	-			
(ΓOCT 4543)	марганец (Мп)	0,100	-	3			
	хром (Cr ³⁺)	суммарно	-	3			
	хром (Cr ⁶⁺)	0,100		3			
	никель (Ni)	0,100	-	3	-		
11.9. Сталь хромомарганцевая	железо (Fe)	0,300	-	[<u> </u>	
(ΓOCT 4543)	марганец (Мп)	0,100	,	3	_	_	
	хром (Cr ³⁺)	суммарно	ļ	3			
	хром (Cr ^{b+})	0,100		3			_
11.10. Сталь хромо-	железо (Fe)	0,300	-		[
марганцевотитановая	марганец (Mn)	0,100	-	3			
(ΓOCT 4543)	хром (Cr ³⁺)	суммарно	_	3			
	хром (Cr ^{b+})	0,100	-	3	_	_	
	титан (Ті)	0,100	_	3			<u> </u>
11.11. Сталь	железо (Fe)	0,300	-		~	-	
кремнемарганцевая и	марганец (Мп)	0,100	_	3			L -
хромокремнемарганцевая	хром (Cr ³⁺)	суммарно	_	3	-	-	
(ΓOCT 4543)	хром (Cr ⁶⁺)	0,100		3			
	кремний (Si)	-	10,000	2		_	

1	2	3	4	5	6	7	8
11.12. Сталь	железо (Fe)	0,300	_		-	_	
хромомолибденовая	марганец (Мп)	0,100	-	3	_	-	_
(ΓOCT 4543)	хром (Cr ³⁺)	суммарно	_	3	_		
	хром (Cr ⁶⁺)	0,100	_	3	-	_	_
	молибден (Мо)	0,250	-	2	_	_	_
11.13. Сталь хромо-	железо (Fe)	0,300	_	_	-		_
никелевольфрамовая и	марганец (Мп)	0,100	-	3	-	_	_
хромоникелемолибденовая	хром (Cr ³⁺)	суммарно	-	3	_	_	_
(ΓOCT 4543)	хром (Cr ⁶⁺)	0,100	_	3	-	_	_
	никель (Ni)	0,100	_	3	-	_	_
	вольфрам (W)	0,050		2	_	_	_
	молибден (Мо)	0,250	-	2	_	_	_
11.14. Сталь хромо-	железо (Fe)	0,300	_	_	_	_	_
молибденалюминиевая	марганец (Мп)	0,100	_	3	-	_	_
и хромовоалюминиевая	хром (Cr ³⁺)	суммарно	-	3	-	_	_
(ΓOCT 4543)	хром (Cr ⁶⁺)	0,100	_	3	_	_	_
	алюминий (Al)	0,500	_	2	-	-	-
	молибден (Мо)	0,250	-	2	_	_	
11.15. Сталь	железо (Fe)	0,300	-	-	-	-	_
хромоникелевольфрамо-	марганец (Мп)	0,100	_	3	_	_	
ванадиевая (ГОСТ 4543)	хром (Cr ³⁺)	суммарно		3	1	-	1
	хром (Cr ⁶⁺)	0,100	_	3		_	
	никель (Ni)	0,100	-	3	_	_	_

родолжение	таблицы

						олжение	
11	2	3	4	5	6	7	8
	ванадий (V)	0,100	-	3	-	-	1
	вольфрам (W)	0,050	-	2	_		_
11.16. Сталь	железо (Fe)	0,300		_	_		_
качественная рессорно-	марганец (Мп)	0,100		3	-		
пружинистая	хром (Cr ³⁺)	суммарно		3	_		_
горячекатанная (ГОСТы	хром (Cr ⁶⁺)	0,100	_	3	-		_
4543, 2032)	никель (Ni)	0,100		3	1		_
11.17. Сталь	железо (Fe)	0,300		_			_
коррозионностойкая и	марганец (Мп)	0,100		3	_	-	_
жаростойкая (ГОСТ	хром (Cr ³⁺)	суммарно		3	-	T - 1	-
5949)	хром (Cr ⁶⁺)	0,100		3		-	
	никель (Ni)	0,100		3	_	T - T	
11.18. Сталь	железо (Fe)	0,300	_	-	-	-	~
низколегированная	марганец (Мп)	0,100		3	_	1 - 1	
каропрочная перлитного	хром (Cr ³⁺)	суммарно		3		T - T	
сласса (ГОСТ 5632)	хром (Cr ⁶⁺)	0,100		3		- 1	
	никель (Ni)	0,100		3			
	молибден (Мо)	0,250		2			
	ванадий (V)	0,100		3	-		_
	медь (Си)	1,000		3	_		

1	2	3	4	5	6	7	8
11.19. Стали	железо (Fe)	0,300	-	_	_	_	-
жаропрочные	марганец (Mn)	0,100		3	_	-	_
мартенситного и	хром (Cr ³⁺)	суммарно		3	_	-	_
мартенсито-ферритного	хром (Cr ⁶⁺)	0,100		3	-		_
классов (ГОСТ 5632)	никель (Ni)	0,100		3		<u> </u>	
	молибден (Мо)	0,250		2		T -	_
	ванадий (V)	0,100	-	3		<u> </u>	_
	вольфрам (W)	0,050		2	=		
11.20. Стали	железо (Fe)	0,300		-	_	-	-
жаропрочные	марганец (Мп)	0,100		3	_		
аустенитного класса	хром (Cr ³⁺)	суммарно		3			
(ΓOCT 5632)	хром (Cr ⁶⁺)	0,100		3	-		
	никель (Ni)	0,100		3	1		
	молибден (Мо)	0,250		2	1		_
	вольфрам (W)	0,050	_	2		_	-
	ниобий (Nb)	-	0,010	2		<u> </u>	
	титан (Ті)	0,100		3			_
11.21. Сплавы на железо-	железо (Fe)	0,300	_		=		-
никелевой основе (ГОСТ	марганец (Мп)	0,100	-	3	_	_	
5632)	хром (Cr ³⁺)	суммарно	_	3	_	_	_
	хром (Cr ⁶⁺)	0,100		3		-	
	никель (Ni)	0,100	-	3	-		_

ГН 2.3.3.972—0

					Прод	олжение	таблиць
1	2	3	4	5	6	7	8
	вольфрам (W)	0,050	_	2	-	 _ _ _	_
	алюминий (Al)	0,500	_	2		-	
	титан (Ті)	0,100		3		1 -	!
11.22. Сплавы	никель (Ni)	0,100		3		-	
на никелевой основе	хром (Сг ³⁺)	суммарно		3	-	-	_
(ΓΟCT 5632)	хром (Cr ⁶⁺)	0,100		3	-	-	<u> </u>
	вольфрам (W)	0,050	-	2	_	-	-
	молибден (Мо)	0,250	-	2	-		
	ниобий (Nb)		0,010	2			_
	титан (Ті)	0,100		3			
	алюминий (Al)	0,500		2	_		
	марганец (Mn)	0,100		3]	
11.23. Медь (ГОСТ 859)	медь (Cu)	1,000	<u> </u>	3	_	T -	-
	сурьма (Sb)	- 1	0,050	2			-
	мышьяк (As)	0,050	-	2	_		-
	железо (Fe)	0,300	~				
	никель (Ni)	0,100		3			
	свинец (Pb)	0,030		2	_		-
11.24. Латунь (сплав меди	медь (Си)	1,000		3			
с цинком)	цинк (Zn)	1,000		3]	
простые деформируемые	железо (Fe)	0,300				<u> </u>	
(ΓOCT 1019)	свинец (Рь)	0,030	_	2	_	T -	_

					- · · F - · · ·		Таолиць
1	2	3	4	5	6	7	8
специальные	медь (Си)	1,000	-	3	_	<u> </u>	-
(FOCT 1019)	цинк (Zn)	1,000		3	_		-
	алюминий (Al)	0,500		2	_		_
	олово (Sn)		2,000	3	_	T -	
	свинец (Рb)	0,030	-	2		T	
	железо (Fe)	0,300	-	-	_		-
	марганец (Мп)	0,100		3	_	T -	
	никель (Ni)	0,100		3	_	T - T	_
литейные (ГОСТ 1019)	медь (Cu)	1,000	_	3	_	-	-
	цинк (Zn)	1,000		3	_	_	
	алюминий (А1)	0,500		2	_	<u> </u>	
	железо (Fe)	0,300			-	-	-
	марганец (Мп)	0,100		3	-	<u> </u>	-
	кремний (Si)	- 1	10,000	2		T -	-
	олово (Sn)	_	2,000	3		T - "	_
	свинец (Pb)	0,030		2	_	-	_
вторичные	медь (Си)	1,000		3		-	_
(ΓΟCT 1020)	цинк (Zn)	1,000		3	_		_
	алюминий (Al)	0,500		2		T	-
	железо (Fe)	0,300			-		_
	марганец (Mn)	0,100	_	3	_		
	кремний (Si)		10,000	2			
	никель (Ni)	0,100		3			

					Прод	олжение	таблиц
1	2	3	4	5	6	7	8
	олово (Sn)	-	2,000	3	_	_	
	свинец (Рь)	0,030		2	_		
11.25. Бронзы							
оловянные	медь (Си)	1,000		3		_	
(ГОСТы 613, 614)	цинк (Zn)	1,000	-	3	_	_	- T
	никель (Ni)	0,100		3	_	_	
	олово (Sn)		2,000	3			_
	свинец (Pb)	0,030	_	2			
безоловянные	медь (Cu)	1,000	_	3	-	T -	
(ΓOCT 493)	алюминий (Al)	0,500		2			_
	железо (Fe)	0,300	-	-			
	марганец (Mn)	0,100	-	3			
	никель (Ni)	0,100	_	3			
	свинец (Pb)	0,030		2	_	T -	
	бериллий (Ве)	0,0002	-	1		_	_
11.26. Медно-никелевы	е сплавы						
мельхиор	медь (Си)	1,000	_	3	_	T -	-
	марганец (Мп)	0,100		3	-		_
	никель (Ni)	0,100	-	3		I -	
	железо (Fe)	0,300	-		_		
нейзильбер	медь (Си)	1,000	-	3		L -	
	цинк (Zn)	1,000		3			
	никель (Ni)	0,100		3	_	_	-

			продолжение таелиц.					
1	2	3	4	5	6	7	8	
нейзильбер свинцовый	медь (Си)	1,000	-	3	_	_	-	
	никель (Ni)	0,100	-	3				
	свинец (Pb)	0,030	_	2	-	_	-	
11.27. Никелевые сплавы								
никель кремнистый	никель (Ni)	0,100		3	_		_	
(FOCT 492)	кремний (Si)	1 - 1	10,000	2		-	_	
никель марганцовый	никель (Ni)	0,100	_	3				
(ΓOCT 492)	марганец (Мп)	0,100		3	_	_		
алюмель (ГОСТ 492)	никель (Ni)	0,100	_	3				
	кремний (Si)		-	2				
	марганец (Мп)	0,100		3		_	_	
	алюминий (Al)	0,500	-	2		_	_	
хромель (ГОСТ 492)	никель (Ni)	0,100		3				
	хром (Cr ³⁺)	суммарно		3	_	_	_	
	хром (Cr ⁶⁺)	0,100	_	3				
монель (ГОСТ 492)	никель (Ni)	0,100		3				
	медь (Си)	1,000		3		_		
	железо (Fe)	0,300					_	
	марганец (Мп)	0,100		_ 3	-		'	
нихром (ГОСТ 5632)	никель (Ni)	0,100	_	3	1		_	
	хром (Cr ³⁺)	суммарно		3	-	_		
	хром (Cr ⁶⁺)	0,100	_	3				
	железо (Fe)	0,300		_	-	_	_	

					Продо	лжение	таблиц
1	2	3	4	5	6	7	8
	титан (Ті)	0,100	_	3		-	-
ферронихром	никель (Ni)	0,100		3			_
(FOCT 5632)	хром (Cr ³⁺)	суммарно		3			
	хром (Cr ⁶⁺)	0,100		3		-	_
11.00 Ft (FOCT - 140)	железо (Fe)	0,300	_			-	
11.28. Припои (ГОСТы 149	9, 8190)						
оловянно-свинцовые	олово (Sn)	T - I	2,000	3		_	
	свинец (Рb)	0,030		2			
свинцово-серебряные	свинец (Pb)	0,030	-	2			
	кадмий (Cd)	0,001		2			-
	серебро (Ад)	- 1	0,050	2	-	_	1
11.29. Цинк и его сплавы	цинк (Zn)	1,000		3	-	_	_
(FOCT 3640)	свинец (Pb)	0,030		2			
	железо (Fe)	0,300				_	
	кадмий (Cd)	0,001	-	2	_		
	медь (Си)	1,000	_	3	-	-	-
11.30. Алюминий первичны	лй (ГОСТ 11069)						
особой чистоты	алюминий (Al)	0,500	-	2	-		
высокой чистоты	алюминий (Al)	0,500	-	2			
	железо (Fe)	0,300			-		
	кремний (Si)	-	10,000	2	_		
	медь (Си)	1,000		3	_	- 7	_

							•
1	2	3	4	5	6	7	8
технической чистоты	алюминий (Al)	0,500		2	_	_	_
	железо (Fe)	0,300	_	T -			
	кремний (Si)		10,000	2	_	_	
	медь (Си)	1,000	-	3	-	-	_
	цинк (Zn)	1,000	_	3	_	_	_
	титан (Ті)	0,100		3	-	_	_
11.31. Сплавы алюминия						,	
деформируемые	алюминий (Al)	0,500	-	2			
	марганец (Мп)	0,100	-	3		-	_
	железо (Fe)	0,300	-	_	_	-	_
	медь (Cu)	1,000	_	3			_
	цинк (Zn)	1,000	_	3	_		- T
	титан (Ті)	0,100	-	3	-	-	-
	ванадий (V)	0,100	-	3		—	-
литейные (ГОСТ 2685)	алюминий (Al)	0,500		2			
	медь (Cu)	1,000	-	3	_	-	_
	кремний (Si)	_	10,000	2	_	_	-
	марганец (Mn)	0,100	-	3		Ι-	
	цинк (Zn)	1,000	-	3		_	_
	титан (Ті)	0,100	~	3	-		-
11.32. Титан технический	титан (Ti)	0,100	-	3	_	_	
	железо (Fe)	0,300	~		_		_
	кремний (Si)	_	10,000	2	_		_

					Проде	олжение	таблицы
1	2	3	4	5	6	7	8
11.33. Сплавы титана	титан (Ті)	0,100	_	3	_	-	-
	алюминий (Al)	0,500		2		-	
	хром (Cr ³⁺)	суммарно		3		T -	- 1
	хром (Cr ⁶⁺)	0,100		3	_		-
	молибден (Мо)	0,250	_	2	-		
	марганец (Мп)	0,100		3	-	_	
	ванадий (V)	0,100	_	3			
	железо (Fe)	0,300	_		_	-	

Приложение 1 Алфавитный перечень контролируемых химических веществ, элементов с указанием методов их определения

Контролируемые	ГОСТ, методические указания (МУ, МУК),
показатели	методические рекомендации (МР)
1	2
ацетальдегид	МУК 4.1.599—96, МУК 4.1.650—96
ацетон	МУ 942—72, МУ 4149—86, МУК 4.1.650—96, МУК 4.1.649—96
акрилонитрил	ГОСТ 15820, МУК 2.3.3.052—96, МУК 4.1.658—96, МУ 4628—88, МР 123—11/284—7
ацетофенон	МУ 4077—86
бензол	МУ 4628—88, МУК 4.1.650—96, МУК 4.1.649—96, МУК 4.1.739—99
бензальдегид	МУК 4.1,649—96
бутадиен (дивинил)	МУ 942—72
бутилакрилат	МУК 4.1.657—96, MP 2447—81
бутилацетат	МУ 41419—86, МУ 942—72
бенз(а)пирен	ГОСТ 23683, МУК 4.1.741—99
винил хлористый	ГОСТ 25737 (СТ СЭВ 2660—82), МР 1941—78
винилацетат	ГОСТ 22648, MP 2915—82, MP 1870—78
гексан	МУ 4149—86, МУК 4.1.650—96
гептан	МУ 4149—86
гексен	МУ 4149—86, МУК 4.1.650—96
гептен	МУ 4149—86, МУК 4.1.650—96
гексаметилендиамин	МР 1503—76, Инструкция №880—71
диоктилфталат	Инструкция №880—71, МУ 4077—86, МУК 4.1.738—99
дидодецилфталат	Инструкция №880—71, МУК 4.1.738—99
диизододецилфталат	Инструкция №880—71, МУК 4.1.738—99
диметилтерефталат	Инструкция №880—71, МУ 2314—81, МУК 4.1.745—99
диметилфталат	Инструкция №880—71, МУК 4.1.738—99
дихлорбензол	МУ 942—72, МУК 4.1.650—96
дифенилолпропан	МР 1436—76, МУ 4395—87, Инструкция №880—71
кумол (изопропилбензол)	ΓΟCT 15820, MY 4628—88

1	2
ксилолы (смесь	МУ 4628—88, МУ 2314—81, МУК 4.1.650—96,
изомеров)	МУК 4.1.649—96, МУК 4.1.739—99
Е-капролактам	MP 1328—75
α-метилстирол	ГОСТ 15820, МУ 4628—88
метилметакрилат	MP 1863—78, MY 4628—88, MYK 2.3.3.052—96
метилакрилат	МУ 4628—88, МУК 2.3.3.052—96
метилэтилкетон	МУ 942—72
метилацетат	МУ 4149—86, МУ 2314—81
метиленхлорид	МУ 94272, МУК 4.1.64696
спирты:	
метиловый	МУ 4149—86, МУ 2314—81, МУК 4.1.650—96
пропиловый	МУ 4149—86
изопропиловый	МУ 4149—86
бутиловый	МУ 4149—86
изобутиловый	МУ 4149—86
стирол	ГОСТ 15820, ГОСТ 22648, МУК 2.3.3.052—96,
	MYK 4.1.649—96, MP 1730—77, MP 1864—78,
	MP 2406—81, MP 1327—75, MP 123—11/284—7, MP 1863—78, MУ 4628—88
толуол	MY 942—72, MY 4628—88, MYK 4.1.650—96.
	МУК 4.1.651—96, МУК 4.1.649—96
формальдегид	ГОСТ 22648, МУ 4395—87, МУ 4149—86,
	МУК 4.1.653—96, МУК 4.1.753—99, МР 1849—78,
	MP 3315—82
фенол	МУ 4395—87, МУК 4.1.647—96, МУК 4.1.737—99, МУК 4.1.752—99, МР 1436—76
хлорбензол	MY 942—72, MYK 4.1.650—96
этилацетат	MY 4149—86
этилацетат	ГОСТ 15820, МУК 2.3.3.052—96, МУК 4.1.650—96,
JIMIOCH30II	MYK 4.1.652—96, MYK 4.1.649—96, MYK 4.1.739—99,
+	MP 1864—78, MY 4628—88
этиленгликоль	Инструкция №880—71
эпихлоргидрин	MP 2413—81, MY 4395—87
фтор-ион (суммарно)	ГОСТ 4386, ГОСТ 22648, МУ 1959—78, МУ 3034—84
алюминий (Al)	ГОСТ 18165, ГОСТ 30178, МП*)

l i	2
барий (Ва)	МУ 4077—86, МП
бериллий (Ве)	ГОСТ 18294, МП
бор (В)	МУ 1856—78, МП
ванадий (V)	МП
висмут (Ві)	МП
вольфрам (W)	МП
железо (Fe)	ГОСТ 4011, ГОСТ 30178, МУ 1811—77, МП
кадмий	ГОСТ 30178, МУК 4.1.742—99, МР 1510—76, МП
кобальт (Со)	МУ 1856—78, МП
кремний (Si)	МП
литий (Li)	МП
марганец (Мп)	ГОСТ 4974, МП
медь (Си)	ГОСТ 4388, ГОСТ 30178, МУК 4.1.742—99, МУ 1811—77, МУ 1856—78, МУК 4.1.742—99, МП
молибден (Мо)	ГОСТ 18308, МП
мышьяк (As)	ГОСТ 4152, ГОСТ 30178, МУ 1856—78, МП
натрий (Na)	МП
никель (Ni)	ГОСТ 30178, МУ 1811—77, МУ 1856—78, МП
ниобий (Nb)	МП
олово (Sn)	МП
ртуть (Hg)	ГОСТ 30178, МП
серебро (Ад)	ГОСТ 18293, МП
свинец (Рь)	ГОСТ 18293, ГОСТ 30178, МУК 4.1.742—99, МУ 1856—78, МП
сурьма (Sb)	ГОСТ 30178, МП
титан (Ті)	МΠ
хром (Cr ³⁺)	ГОСТ 30178, МП
хром (Cr ⁶⁺)	ГОСТ 30178, МП
цинк (Zn)	ГОСТ 18293, МУК 4.1.742—99, МУ 1811—77, МУ 1856—78, МУ 4077—86, МП

 $M\Pi^*$) Методическое пособие "Атомно-абсорбционный анализ в санитарно-гигиенических исследованиях" / Под редакцией Л. Г. Подуновой.—М., 1997.

Методы определения

ГОСТ 26383	Парафины нефтяные
ГОСТ 25737 (СТ СЭВ 2660—82)	Поливинилхлорид и сополимеры винилхлорида. Хроматографический метод определения винилхлорида
FOCT 15820	Пластмассы. Метод определения остаточных мономеров: сти- рола, о-метилстирола, акрилонитрила и неполимеризующихся примесей этилбензола и изопропилбензола в полистирольных пластиках с помощью газовой хроматографии
ГОСТ 22648	Пластмассы. Методы определения гигиенических показателей
ГОСТ 18165	Вода питьевая. Метод определения массовой концентрации алюминия
ГОСТ 18294	Вода питьевая. Метод определения массовой концентрации бериллия
ГОСТ 4974	Вода питьевая. Метод определения содержания марганца
ΓΟCT 4388	Вода питьевая. Метод определения содержания меди
ГОСТ 4152	Вода питьевая. Метод определения массовой концентрации мышьяка
ГОСТ 4011	Вода питьевая. Метод определения общего железа
ГОСТ 18293	Вода питьевая. Метод определения содержания свинца, цинка, серебра
ГОСТ 18308	Вода питьевая. Метод определения содержания молибдена
ГОСТ 4386	Вода питьевая. Метод определения массовой концентрации фтора
ГОСТ 30178	Атомно-абсорбционный метод определения токсичных элементов в пищевых продуктах и сырье
МУ 942—72	Методические указания по определению перехода органических растворителей из полимерных материалов в контактирующие с ними воздух, модельные растворы, сухие и жидкие пищевые продукты
МУ 4149—86	Методические указания по осуществлению государственного санитарного надзора за производством и применением полимерных материалов класса полиолефинов, предназначенных для контакта с пищевыми продуктами
МУ 4628— 88	Методические указания по газохроматографическому определению остаточных мономеров и неполимеризующихся примесей, выделяющихся из полистирольных пластиков в воде, модельных средах и пищевых продуктах бенз(а)пирен

МУ 4077—86	Методические указания по санитарно-химическому исследованию резин и изделий из них, предназначенных для контакта с пищевыми продуктами
МУ 4395—87	Методические указания по гигиенической оценке лакированной консервной тары
МУ 2314—81	Методические указания на газохроматографическое определение диметилтерефталата, метилацетата, метилобензоата, метилтолуилата, метилового и п-толуилового спиртов, п-толуилового альдегида, п-толуиловой кислоты, п-ксилола и дитолилметана в воздухе
МУ 1959—78	Методические указания по санитарно-химическому исследованию изделий из фторопласта 4 и 4Д в пищевой промышленности
МУ 3034—84	Методические указания по гигиенической оценке кремнийорганических и фторорганических покрытий, предназначенных для использования в пищевой промышленности при температуре 100 °C
МУ 1856—78	Методические указания по санитарно-химическому исследованию эмалированной посуды
МУ 1811—77	Методические указания по санитарно-химическому исследованию посуды и столовых приборов, изготовленных из мельхиора, нейзильбера и латуни
МУК 4.1.599—96	Методические указания по газохроматографическому определению ацетальдегида в воздухе
МУК	Методические указания. Санитарно-химическое исследо-
2.3.3.052—96	вание изделий из полистирола и сополимеров стирола
МУК 4.1.646—96	Методические указания по газохроматографическому определению галогенсодержащих веществ в воде
МУК 4.1.647—96	Методические указания по газохроматографическому определению фенола в воде
МУК 4.1.649—96	Методические указания по хромато-масс- спектрометрическому определению летучих органических веществ в воде
МУК 4.1.650—96	Методические указания по газохроматографическому определению ацетона, метанола, бензола, толуола, этиленбензола, пентана, о-, м-, п-ксилола, гексана, октана, декана в воде
МУК 4.1.651—96	Методические указания по газохроматографическому определению толуола в воде
МУК 4.1.652—96	Методические указания по газохроматографическому определению этилбензола в воде

МУК 4.1.653—96	Методические указания по газохроматографическому определению формальдегида
МУК 4.1.657—96	Методические указания по газохроматографическому определению бутилакрилата и бутилметакрилата в воде
МУК 4.1.658—96	Методические указания по газохроматографическому определению акрилонитрила в воде
МУК 4.1.737—99	Хромато-масс-спектрометрическое определение фенолов в воде
МУК 4.1.738—99	Хромато-масс-спектрометрическое определение фталатов и органических кислот в воде
МУК 4.1.739—99	Хромато-масс-спектрометрическое определение бензола, то- луола, хлорбензола, этилбензола, о-ксилола, стирола в воде
МУК 4.1.741—99	Хромато-масс-спектрометрическое определение фенантре- на, антрацена, флуоретана, перена, хризена и бенз(а)пирена в воде
МУК 4.1.742—99	Инверсионное вольтамперометрическое измерение кон- центрации ионов цинка, кадмия, свинца и меди в воде
МУК 4.1.745—99	Газохроматографическое определение диметилового эфира терефталевой кислоты в воде
МУК 4.1.752—99	Газохроматографическое определение фенола в воде
МУК 4.1.753—99	Ионохроматографическое определение формальдегида в воде
MP 123— 11/284—7	Методические рекомендации по спектрофотометрическому определению стирола и акрилонитрила при совместном присутствии их в вытяжках из АБС-пластиков и сополимеров стирола с акрилонитрилом (водной и 5 % растворе поваренной соли)
MP 2447—81	Методические рекомендации по определению бутилового эфира акриловой и метакриловой кислот в водных вытяж- ках из полимерных материалов
MP 1941—78	Методические рекомендации по определению хлористого винила в ПВХ и полимерных материалах на его основе, в модельных средах, имитирующих пищевые продукты, в продуктах питания
MP 2915—82	Методические рекомендации по определению винилацетата в воде методом газожидкостной хроматографии
MP 1870—78	Методические рекомендации по меркуриметрическому определению малых количеств винилацетата в воде, водноспиртовых растворах и пищевых продуктах
MP 1503—76	Методические рекомендации по определению гексамети- лендиамина в воде при санитарно-химических исследова- ниях полимерных материалов, применяемых в пищевой и текстильной промышленности

MP 1436—76	Методические рекомендации к определению дифенилол- пропана, а также некоторых фенолов в его присутствии, при санитарно-химических исследованиях изделий из полимерных материалов, предназначенных для контакта с пищевыми продуктами
MP 1863—78	Методические рекомендации по определению стирола и метилметакрилата в водных и солевых вытяжках
MP 1328—75	Методические рекомендации по определению капролакта- ма в воде, воздухе и биологических средах
MP 173077	Методические рекомендации по определению стирола с помощью тонкослойной хроматографии при санитарно- химическом исследовании изделий из полистиролов
MP 1864—78	Методические рекомендации по хроматографическому методу раздельного определения стирола и этилбензола при их совместном присутствии в модельных средах, имитирующих пищевые продукты
MP 2406—81	Методические рекомендации по определению стирола в пище- вых продуктах методом газожидкостной хроматографии
MP 1327—75	Методические рекомендации по раздельному определению стирола, кумарона, индена в воздухе методом тонкослой- ной хроматографии
MP 1849—78	Методические рекомендации по определению формальде- гида в водных вытяжках и модельных средах
MP 3315—82	Методические рекомендации по определению формальдегида в воздухе
MP 2413—81	Методические рекомендации по определению эпихлоргидрина в водных вытяжках из полимерных материалов
MP 1510—76	Методические рекомендации по определению кадмия в воде и модельных средах, имитирующих пищевые продукты
Инструкция № 880—71	Инструкция по санитарно-химическому исследованию изделий, изготовленных из полимерных и других синтетических материалов, предназначенных для контакта с пищевыми продуктами.—М., 1972
МП	Методическое пособие "Атомно-абсорбционный анализ в санитарно-гигиенических исследованиях" / Под редакцией Л. Г. Подуновой.—М., 1997

Приложение 3

Рекомендации по выбору контролируемых показателей при исследовании комбинированных, композиционных материалов, а также материалов, не вошедших в настоящий перечень

- 1. При проведении санитарно-химических исследований комбинированных материалов, состоящих из двух и более слоев, контролируемые показатели определяются, в первую очередь, материалом слоя, контактирующего с продуктами питания и следующего за ним слоя. Если эти слои проницаемые и возможна миграция гигиенически значимых ингредиентов из глубинных слоев, то и природой следующих слоев.
- 2. При санитарно-химическом исследовании композиционных материалов, как-то клеев, пластизолей, герметиков, покрытий на основе смол различного типа и других аналогичных объектов, контролируемые показатели определяются исходя из основного компонента (вида смолы), используемых растворителей и добавок.
- 3. При отсутствии в СанПиН сведений о материале (материалах), использованном (использованных) для изготовления объекта исследования, контролируемые санитарно-химические показатели определяются исходя из химической природы материала, условий его синтеза, его рецептурного состава.

Приложение 4

Перечень веществ, имеющих значения ДКМ, подлежащие уточнению

- 1. Винилацетат
- 2. Капролактам
- 3. Эпихлоргидрин
- 4. Формальдегид
- 5. Гексаметилендиамин

Предельно допустимые количества химических веществ, выделяющихся из материалов, контактирующих с пищевыми продуктами

Гигиенические нормативы ГН 2.3.3.972—00

Редакторы Кожока Н. В., Максакова Е. И. Технические редакторы Гарри Д. В., Смирнов В. В.

Подписано в печать 20.07.00

Формат 60х88/16

Тираж 3000 экз.

Печ. л. 3,5 Заказ 6797

ЛР № 021232 от 23.06.97 г.

Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11. Отделение реализации: тел.: 198-61-01

Отпечатано с готового оригинал-макета в филиале Государственного ордена Октябрьской революции, ордена Трудового Красного Знамени Московского предприятия "Первая Образцовая типография" Министерства Российской Федерации по делам печати, телерадновещания и средств массовых коммуникаций. 113114. Москва, Шлюзовая наб., 10.